IMPTAM: Dst calculated in ring current modeling: Two methods, DPS and Biot-Savart integration N. Yu. Ganushkina (1, 2) and M. Liemohn (1)

(1) University of Michigan, Ann Arbor MI, USA/
(2) Finnish Meteorological Institute, Helsinki, Finland

This work was partly done during SPACECAST ollaborative Project funded by the European Union Framework 7 programme

2011 Joint CEDAR-GEM Workshop,26 June - 01 July 2011, Santa Fe, NM, USA

CIR-storm at the beginning of rising phases of solar cycle 24

NOAA/SWPC Boulder,CO USA

Magnetic storm on July 21-23, 2009

Small storm

Inner Magnetosphere Particle Transport and Acceleration Model (1)

(Ganushkina et al., AnnGeo, 2005, JGR, 2006)

- Changes in distribution function f and flux calculations for ions and electrons with arbitrary pitch angles using *Liouville*'s theorem taking into account loss processes.

$$\frac{df}{dt} = \frac{\partial f}{\partial \phi} \cdot V_{\phi} + \frac{\partial f}{\partial r} \cdot V_{r} + sources - losses$$

- Boundary distribution: at any location from 6.6 to 10 Re

- Transport of particles:

-Drifts with velocities, radial and longitudinal, as sum of **ExB and magnetic drifts, 1**st and 2nd inv = const in **time-dependent magnetic and electric fields** with self-consistent magnetic field

$$Vdrift = \frac{\vec{E} \times \vec{B}}{B^{2}} + \frac{mv_{\perp}^{2}}{2qB^{3}} (\vec{B} \times \nabla B) + \frac{mv_{II}^{2}}{q} \frac{\vec{R}_{c} \times \vec{B}}{R_{c}^{2}B^{2}}$$
$$\left\langle v_{0} \right\rangle = \frac{E_{0} \times B_{0}}{B_{0}^{2}} + \frac{2p}{q\tau_{b}B_{0}} \nabla I \times e_{0}, \qquad I = \int_{S_{m}}^{S_{m}} [1 - B(s) / B_{m}]^{1/2} ds, \quad _{4}$$

Inner Magnetosphere Particle Transport and Acceleration Model (2) (Ganushkina et al., AnnGeo, 2005, JGR, 2006)

Losses for ions:

- charge exchange with Hydrogen from geocorona;
- Coulomb interaction in dense thermal plasmas (plasmasphere);
- convection outflow, particle intersects the magnetopause and flows away along magnetosheath magnetic field lines.

Model-dependent Dst calculations during storms

1. Using **Dessler-Parker-Sckopke relationship**:

The energy in the ring current can be expressed by

$$V \quad \frac{\Delta \vec{B}}{B_E} = -\frac{2}{3} \frac{W_{RC}}{W_{mag}} \hat{k} , \text{ where}$$

- $W_{mag} = \frac{4\pi}{3\mu_0} B_E^2 R_E^3$ is the total energy in the Earth's dipole magnetic field above the surface, B_E is the magnetic field at the Earth's surface, R_E is one Earth radii (6371 km).
 - ΔB is the change in B measured at the surface of the Earth (Dst).

2. Calculating from the model ring current by **Biot-Savart law**:

The magnetic disturbance parallel to the earth's dipole at the center of the earth ΔB induced by the azimuthal component of J_{\perp} , is given by

$$\Delta B = \frac{\mu_0}{4\pi} \int_{r} \int_{\lambda} \int_{\phi} \cos^2 \lambda J_{\phi}(r,\lambda,\phi) dr d\lambda d\phi$$
$$\vec{j}_{\perp} = \frac{\vec{B}}{B^2} \times \left(\nabla P_{\perp} + \frac{P_{\perp} - P_{\perp}}{B^2} (\vec{B} \cdot \nabla) \vec{B}\right)$$

Combinations of models for IMPTAM for July 21-23, 1997 storm

No self-consistency (special subject for separate study)

	Electric Field	Boundary conditions
dipole	Volland-Stern	Tsyganenko and Mukai, 2003
Т89	Volland-Stern	Tsyganenko and Mukai, 2003
Т96	Volland-Stern	Tsyganenko and Mukai, 2003
TS04	Volland-Stern	Tsyganenko and Mukai, 2003
dipole	Boyle et al., 1997	Tsyganenko and Mukai, 2003
T89	Boyle et al., 1997	Tsyganenko and Mukai, 2003
Т96	Boyle et al., 1997	Tsyganenko and Mukai, 2003
TS04	Boyle et al., 1997	Tsyganenko and Mukai, 2003

Best fit with observed Dst for **dipole** + **T96** + **VS** model combination

Model combination:

-Dipole magnetic field
-Volland-Stern electric field
- Tsyganenko and Mukai, 2003
boundary conditions at 10 Re

-overestimate by DPS and BS

-BS overestimates more

-ERC by BS, not by DPS

 large Dst from near-Earth "tail" (not stretched, dipole field), larger by BS

Model combination:

Dipole magnetic field
Boyle electric field
Tsyganenko and Mukai, 2003
boundary conditions at 10 Re

-overestimate by DPS and BS

- -BS overestimates more
- -ERC by BS, not by DPS
- large Dst from near-Earth "tail" (not stretched, dipole field), larger by BS

Electric field difference: similar

Model combination:

- Dipole magnetic field + T89
 Volland-Stern electric field
- Tsyganenko and Mukai, 2003 boundary conditions at 10 Re

- overestimate by BS, but not by DPS

- DPS follows observed Dst
- ERC by BS, not by DPS
- large Dst from near-Earth "tail" (but smaller than for dipole), larger by BS

Magnetic field difference

Model combination:

- **Dipole** magnetic field + **T89**
- Boyle electric field
- **Tsyganenko and Mukai**, 2003 boundary conditions at 10 Re
 - overestimate by BS, but not by DPS
 - DPS follows observed Dst
 - ERC by BS, not by DPS
 - large Dst from near-Earth "tail" (but smaller than for dipole), larger by BS

Electric field difference: similar

Model combination:

- **Dipole** magnetic field + **T96**
- Volland-Stern electric field
- **Tsyganenko and Mukai**, 2003 boundary conditions at 10 Re

- underestimate by DPS, but not by BS

- BS follows observed Dst
- ERC by BS, not by DPS
- Moderate Dst from near-Earth "tail" (smaller than for T89), close values by BS and DPS

Magnetic field difference

Model combination:

- **Dipole** magnetic field + **T96**
- Boyle electric field
- **Tsyganenko and Mukai**, 2003 boundary conditions at 10 Re
 - underestimate by DPS, but not by BS
 - BS follows observed Dst
 - ERC by BS, not by DPS
 - Moderate Dst from near-Earth "tail" (smaller than for T89), close values by BS and DPS

Model combination:

Dipole magnetic field + TS04
Volland-Stern electric field
Tsyganenko and Mukai, 2003
boundary conditions at 10 Re

- underestimate by DPS, but over estimate by BS

- ERC by BS, not by DPS
- Large Dst from near-Earth "tail" (smaller than for T89), larger by BS

Model combination:

- **Dipole** magnetic field + **TS04**
- Boyle electric field
- **Tsyganenko and Mukai**, 2003 boundary conditions at 10 Re

- underestimate by DPS, but over estimate by BS

- ERC by BS, not by DPS
- Large Dst from near-Earth "tail" (smaller than for T89), larger by BS

Time moments for July 21-23, 2009 storm

Current densities for July 21-23, 2009 July 22, 00 UT July 22, 04 UT July 22, 06 UT

10.0

, nA/m/2

July 22, 0915 UT

July 22, 18 UT

Perpendicular pressure for July 21-23, 2009

July 22, 00 UT

July 22, 04 UT

July 22, 06 UT

July 22, 08 UT

July 22, 0915 UT

July 22, 18 UT

Combination of models: dipole + TS04 + Boyle, Tsyganenko and Mukai at 10 Re

Pressure perp nPa

THEMIS spectrograms for comparisons for July 21-23, 1997 storm

