

Local Acceleration and Loss of Relativistic Electrons in the Earth's Outer Radiation Belt

Nigel P. Meredith British Antarctic Survey

Jim Dungey Celebration Burlington House, London 10th January, 2013

Earth's Radiation Belts

- Energetic electrons (E > 100 keV) in the Earth's radiation belts are generally confined to two distinct regions
- Inner radiation belt
 - 1.2 < L < 2
 - exhibits long term stability
- Outer radiation belt
 - 3 < L < 7
 - highly dynamic

NASA

Variability of Outer Radiation Belt Electrons

 The flux of relativistic electrons can change by several orders of magnitude on a variety of different time scales

Baker et al., AG, 2008

Importance

- Understanding this variability is important since enhanced fluxes of relativistic electrons:
 - damage satellites, e.g.,
 - 1994: Intelsat K, Anik E1, & E2
 - 1997: Telstar 401
 - 2003: Midori 2
 - risk to humans in space

Baker et al., AG, 2008

Challenge

- Characterise, understand, and ultimately predict the variability of outer radiation belt electrons
- Complex problem involving a variety of source, transport and loss processes

Relativistic Electron Variability

 The fluxes of relativistic electrons (E>1 MeV) in the outer zone are enhanced by a factor of 2 or more in ~50% of all moderate and intense storms

Reeves et al., GRL, 2003

Relativistic Electron Variability

- The fluxes of relativistic electrons (E>1 MeV) in the outer zone are enhanced by a factor of 2 or more in ~50% of all moderate and intense storms
- However, in sharp contrast, ~20% of these storms decrease the fluxes by a factor of 2 or more
- This emphasizes the need to study loss processes as well as acceleration processes

Reeves et al., GRL, 2003

Radial Diffusion

Radial diffusion is an important transport process in the Earth's radiation belts:

- driven by fluctuations in the Earth's electric and magnetic fields on timescales of the drift period
- enhanced by ULF waves [e.g., Hudson et al., 1999; Elkington et al., 1999]
- conserves the first two adiabatic invariants BUT breaks the third adiabatic invariant

Radial Diffusion

• Conservation of first invariant implies:

$$p_{\perp}^2 = 2m_eB$$

 Inward radial diffusion leads to significant energisation

Radial Diffusion

• Conservation of first invariant implies:

 $p_{\perp}^2 = 2m_eB$

- Inward radial diffusion leads to significant energisation
- Outward radial diffusion combined with magnetopause losses can be a significant loss process [Shprits et al., JGR, 2006]

Gyroresonant Wave-Particle Interactions

- Gyroresonant wave-particle interactions play a key role in the Earth's radiation belts
- These interactions can occur when the wave frequency, ω , is Doppler-shifted to a multiple of the relativistic electron gyrofrequency, $\Omega_{\rm e}$

 $ω - \mathbf{k}_{\parallel} \mathbf{v}_{\parallel} = \mathbf{n} \Omega_{\mathbf{e}} / \gamma$

- $-\mathbf{k}_{\parallel}$ is the wave number parallel to the magnetic field
- $-\mathbf{v}_{\parallel}$ is the electron velocity parallel to the magnetic field
- $-\gamma$ is the relativistic factor

Gyroresonant Wave-Particle Interactions

• These interactions break the first and second adiabatic invariants

- Such interactions [e.g., Kennel and Petschek, JGR, 1966] lead to:
 - pitch angle scattering and potential loss to the atmosphere
 - energy diffusion

Important Wave Modes

• Plasma waves that can lead to efficient gyroresonant wave particle interactions with relativistic electrons include:

- Chorus waves
- Magnetosonic waves
- Plasmaspheric hiss
- EMIC waves

 Chorus is an intense emission, observed outside the plasmapause in the frequency range 0.1-0.8fce

• The waves are generated by plasma sheet electrons injected into the magnetosphere during substorms and/or enhanced convection

Global Model of Whistler Model Chorus

- Chorus is strongest in the lower band during active conditions
- Equatorial chorus is strongest in the region 4 < L* < 9 primarily on the dawn-side.
- At higher latitudes chorus tends to be strongest on the dayside from 0700 to 1400 MLT

Equatorial Chorus ($|\lambda_m| < 15^\circ$)

Mid-Latitude Chorus ($15 < |\lambda_m| < 30^\circ$)

Acceleration due to Chorus

- Use 1D Fokker-Planck equation to calculate evolution of particle flux
- Loss and acceleration by chorus are included using the PADIE code with CRRES wave model
 - timescale to increase the flux at 1 MeV by an order of magnitude is ~ 1 day
 - consistent with satellite observations during the recovery phase of storms
- Numerous studies have since shown that chorus is an important acceleration mechanism

Horne et al., JGR, 2005

Losses due to Chorus

- Relativistic electrons near the loss cone can also resonate with chorus at high geomagnetic latitudes
- Bursty nature of chorus leads to < 1 second intensifications of precipitation known as microbursts

Lorentzen et al., JGR, 2001

Losses due to Chorus

- Bounce-averaged diffusion rates for 100 pT chorus waves at L = 4 show:
 - loss timescales near the loss cone due to chorus can approach 1 day
 - requires chorus at latitudes greater than 30°

Thorne et al., JGR, 2005

Magnetosonic Waves

- intense electromagnetic emissions, fcp < f < flhr
- compressional waves, propagate across B₀
- generated by proton ring distributions [Boardsen et al., JGR, 1992]

Acceleration Due to Magnetosonic Waves

- Energy diffusion rates at L = 4.5 have been estimated using Cluster wave observations and the PADIE code
- Timescale of the order of a day
 - 0.3 < E < 1 MeV outside the plasmapause
 - 0.03 < E < 0.3 MeV inside the plasmapause

Magnetosonic waves may provide a significant energy transfer process between the ring current and the outer radiation belt

Outside plasmapause

Inside plasmapause

Horne et al., GRL, 2007

• Plasmaspheric hiss is a broadband, structureless, ELF emission that occurs in the frequency range from 100 Hz to several kHz

Global Distribution of Plasmaspheric Hiss

Global Distribution of Plasmaspheric Hiss

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL

Global Distribution of Plasmaspheric Hiss

Origin of Plasmaspheric Hiss

- Ray tracing studies show that chorus waves can propagate into the plasmasphere and evolve into plasmaspheric hiss
- Results account for the essential features of hiss

Bortnik et al., Nature, 2008

- Slot region can become filled during exceptionally large storms such as the Halloween Storms of 2003
- Slot region subsequently reforms
- Loss timescales for 2-6 MeV electrons at L = 2.5 estimated to be of the order of 2.9 – 4.6 days
- The dominant loss process must be able to explain this decay

SAMPEX 2-6 MeV Electrons

Baker et al., Nature, 2004

Broadband Plasmaspheric Emissions

- Broadband plasmaspheric emissions can be split into two categories [Meredith et al., 2006]:
 - Plamaspheric hiss
 - 100 Hz < f < 2 kHz
 - from chorus outside the plasmapause
 - MR whistlers
 - 2 kHz < f < 5 kHz
 - produced by thunderstorms on Earth

f > 2 kHz f < 2 kHz f > 2 kHz

Calculation of Losses Due To Hiss

- Use global models of the wave spectral intensity based on CRRES observations
- Calculate bounce-averaged pitch angle rates using the PADIE code
- Loss timescale calculated using the 1D pitch angle diffusion equation following Lyons et al., [1972]

Meredith et al., JGR, 2007

 Loss timescales due to MR whistlers are prohibitively long

> **Quiet Conditions (AE* < 100 nT)** Active Conditions (AE* > 500 nT)

 Loss timescales due to hiss propagating at large wave normal angles are also prohibitively long

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL **Quiet Conditions (AE* < 100 nT)** Active Conditions (AE* > 500 nT)

 Hiss propagating at medium wave normal angles can lead to loss timescales of the order of 10 days during active conditions

Quiet Conditions (AE* < 100 nT) Active Conditions (AE* > 500 nT)

- Hiss propagating at small wave normal angles can lead to loss timescales of the order of 1 – 10 days depending on magnetic activity
- Hiss propagating at small wave normal angles is largely responsible for the formation of the slot region

Quiet Conditions (AE* < 100 nT) Active Conditions (AE* > 500 nT)

Comparison with QL Diffusion due to Hiss

- Plasmaspheric hiss propagating at small and/or medium wave normal angles can explain much of the observed quiet time decay
- Plasmaspheric hiss propagating at large wave normal angles does not contribute to the loss rates

EMIC Waves

- EMIC waves are low frequency waves (0.1-5 Hz) which are excited in bands below the proton gyrofrequency
- They are generated by medium energy (1-100 keV) ring current ions injected during storms and substorms
- They are able to resonate with MeV electrons causing pitch angle scattering and loss to the atmosphere

Figure courtesy of Brian Fraser

- EMIC waves are primarily
- observed between 13:00 and 19:00 MLT over a range of L shells > 3

Spatial Distribution

- The L-mode minimum resonant energies fall below 2 MeV during ~12.5 % of the observations
- These lower energy events occur outside L=4.5
- The R-mode minimum resonant energies tend to be greater than 2 MeV

Scatterring Rates in the Helium Band

Summers et al., JGR, 2007

BAS Radiation Belt Model

- BAS has developed a physical model of the Earth's radiation belts [Glauert et al., in prep.]
- The model is based on the solution of a diffusion equation for phase-space density
- Time-dependent Fokker Planck equation in pitch-angle (α), energy (E) and L* (L)
- The values of the diffusion coefficients D_{LL} , $D_{\alpha\alpha}$ and D_{EE} must be calculated

BAS Radiation Belt Model

- For radial diffusion we use the magnetic radial diffusion coefficients of Brautigam and Albert [2000]
- Pitch angle and energy diffusion coefficients are calculated using the PADIE code [Glauert and Horne, 2005]
- They are based on CRRES statistical maps of lower band chorus, plasmaspheric hiss and lightning generated whistlers scaled by Kp [Meredith et al., 2003; 2007]

E = 1.09 MeV

E = 1.09 MeV

Radial diffusion alone
overestimates flux and does not
predict the slot

E = 1.09 MeV

- Radial diffusion alone overestimates flux and does not predict the slot
- Radial diffusion and hiss predicts the slot but underestimates flux due to lack of local acceleration

E = 1.09 MeV

- Radial diffusion alone overestimates flux and does not predict the slot
- Radial diffusion and hiss predicts the slot but underestimates flux due to lack of local acceleration
- Radial diffusion, chorus and hiss best reproduce structure of the radiation belts

- SPACECAST is an EU-funded project designed to protect space assets from high energy particles by developing European dynamic modelling and forecasting capabilities
 - 3 year FP7 collaborative project
 - March 2011-March 2014
 - led by Professor Richard Horne (BAS)
- A major goal of the SPACECAST project is to forecast the electron flux in the outer radiation belt

Forecasting Concept

- It takes ~ 40-60 minutes for the solar wind to flow from the ACE satellite to the Earth
- The Swedish Inst. Sp. Phys. (Lund) uses the ACE data to forecast the Kp index
- We then use the Kp forecast to drive the BAS radiation belt model

Electron Radiation Belt Forecasts

• Model

- operates 24 hours a day in near real time and is updated every hour
- provides 3 hourly forecasts using the Kp forecast from Lund
- provides a risk index for GEO, MEO and the slot region
- The forecast is freely available on-line: http://www.fp7-spacecast.eu

SPACECAST – Forecast >800 keV electrons

 During the 9 March 2012 magnetic storm the model forecast the E > 800 keV flux at GOES 13 to within a factor of two and later in the event to within a factor of ten

SPACECAST > 2 MeV Electrons

 ACE solar wind velocity data from and GOES E > 2 MeV flux became unreliable due to the solar proton event

 SPACECAST model switched to use a nowcast of the Kp index from BGS and continued to forecast without interruption

Horne et al., JSW, in press

Risk of Satellite Charging - ESD

- Model results converted into a risk • index based on previous satellite anomalies at geostationary orbit
- High Risk ٠
 - fluence > 5×10^8 cm⁻² sr⁻¹
- Medium Risk •
 - $5x10^7$ < fluence < $5x10^8$ cm⁻²sr⁻¹
- I ow Risk •
 - fluence $< 5 \times 10^7 \text{ cm}^{-2} \text{ sr}^{-1}$
- Note: GOES electron daily fluence ٠ too high during this event due to contamination by > 10 MeV protons

Geostationary Orbit Last 24 hours Forecast High 10 Geostationary Orbit (GOES) ×2 Me<u>V</u>₂ Fluence (cm⁻2 sr⁻¹) Medium GOES 13 Low Model 10^{7} 2000 R 1500 (LU) 6 Å 1000 4 Ч 500 0 08:15 18:15 23:15 04:15 09:15 14:15 1.3:1508 Mar 2012 UTC Time 09 Mar 2012 SPACECAST Project Plot created on Thu Sep 13 09:39:28 2012

Horne et al., JSW, in press

Risk

Index

Risk of Satellite Charging - ESD

- We also calculate a risk index for MEO and the slot region
- Risk depends on satellite design
- Needs close collaboration with satellite operators and designers

Risk **GPS/Galileo** Orbit Index Last 24 hours Forecast High 10⁹ MEO (Typical for Global Navigation Satellites) >2 MeV Fluence (cm² sr⁻) **Medium** 10⁸ Low 10^{7} 10'2000 8 1500 (LL) 6 Å 1000 4 Ч 500

Horne et al., JSW, in press

23:15

UTC Time

18:15

08:15

08 Mar 2012 Plot created on Thu Sep 13 09:39:28 2012

13:15

09:15

14:15

09 Mar 2012 SPACECAST Project

04:15

Next Steps

- Current work is focussed on developing the underlying models. Key next steps include:
 - Better treatment of the outer boundary
 - Improved diffusion coefficients for hiss and chorus
 - Improved radial diffusion coefficients
 - Better low energy boundary condition
 - Model validation
- Improvements to the SPACECAST forecasts will be introduced on 1st March 2013
- Future work will include an assessment of the role of magnetosonic waves and EMIC waves in radiation belt dynamics

• *Chorus waves* are an important acceleration and loss mechanism for electrons with energies from 0.1 to a few MeV

• *Chorus waves* are an important acceleration and loss mechanism for electrons with energies from 0.1 to a few MeV

• *Magnetosonic waves* may be an important acceleration mechanism

• *Chorus waves* are an important acceleration and loss mechanism for electrons with energies from 0.1 to a few MeV

• *Magnetosonic waves* may be an important acceleration mechanism

• *Plasmaspheric hiss* is a major loss process for electron energies from 0.1 to a few MeV

• *Chorus waves* are an important acceleration and loss mechanism for electrons with energies from 0.1 to a few MeV

• *Magnetosonic waves* may be an important acceleration mechanism

• *Plasmaspheric hiss* is a major loss process for electron energies from 0.1 to a few MeV

• *EMIC waves* may be an important loss mechanism for MeV electrons

- SPACECAST is a new European system that includes real time forecasts of the radiation belts for satellite operators
- The forecasts use a physics based model that includes radial diffusion and wave-particle interactions. The model
 - operates 24 hours a day in near real time and is updated every hour
 - provides 3 hourly forecasts using the Kp forecast from Lund
 - provides a risk index for GEO, MEO and the slot region
- Improvements to the SPACECAST forecasts will be introduced on 1st March 2013

Acknowledgement

 The research leading to these results has been funded in part by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 262468

E > 2 MeV Electrons

