

Global Model of Lower Band and Upper Band Chorus from Multiple Satellite Observations

N. P. Meredith¹, R. B. Horne¹, A. Sicard-Piet², D. Boscher², K. H. Yearby³, W. Li⁴ and R. M. Thorne⁴

¹British Antarctic Survey, UK; ²ONERA, France; ³ University of Sheffield, UK; ⁴ UCLA, USA

Fall AGU, San Francisco 3rd- 7th December, 2012

Introduction

- Gyroresonant wave particle interactions with whistler mode chorus play a key role in radiation belt dynamics
- Knowledge of the variability of the chorus wave power as a function of location and geomagnetic activity, required for computation of pitch angle and energy diffusion rates, is thus a critical input to radiation belt models

VLF Wave Database

- To improve our radiation belt models and forecasts for SPACECAST we have developed a large database of VLF waves
- We use data from 5 satellites:
 - Dynamics Explorer 1
 - CRRES
 - Cluster 1
 - Double Star TC1
 - THEMIS
- Database covers all the different phases of the solar cycle

Magnetic Coordinates

- Radiation belt models calculate the phase space density as a function of energy, pitch angle, L* and time.
- L* is related to the third adiabatic invariant, Φ (Roederer, 1977)
- We develop our new global model as a function of L*, MLT and λ_m
- Calculate L*, MLT and λ_m using the ONERA-DESP library v4.2 (Boscher et al., 2008)
- The IGRF field at the middle of the appropriate year and the Olson-Pfitzer quiet time model (Olson and Pfitzer, 1977)

Wave Database

- For each satellite we bin the average wave intensity and number of samples as a function of
 - Frequency (13 variable and 8 fixed frequency bands)
 - L*
 - MLT
 - MLAT
 - Location with respect to the plasmapause
 - Magnetic activity

Statistical Analysis

- Here we conduct a statistical analysis of the average wave intensities of lower (0.1fce < f < 0.5fce) and upper (0.5fce < f < fce) band chorus as a function of spatial location and geomagnetic activity
- We split the magnetic activity into three levels which we define as
 - Quiet AE < 100 nT
 - Moderate 100 < AE < 300 nT
 - Active AE > 300 nT

Equatorial Lower Band Chorus

- Average wave intensity outside the plasmapause as a function of L* and MLT for the region $-15^{\circ} < \lambda_{m} < 15^{\circ}$
- Lower band chorus is substorm dependent
- Largest intensities are seen during active conditions primarily on the dawn-side

Inter-comparison of Wave Data

- At L*= 6.5 and 7.5 there is good agreement, largely to within a factor of 2 or so between the THEMIS and Double Star TC1 data between 0200 and 1900 MLT
- At L*= 5.5 there is slightly more scatter but generally good agreement between the CRRES, THEMIS and Double Star TC1 values between 0200 and 1600 MLT

Equatorial Upper Band Chorus

- Upper band chorus is also substorm dependent but much weaker and less extensive
- Largest intensities are again seen during active conditions on the dawnside

Combined Global Model of Equatorial Chorus

Combined coverage extends from the plasmapause out to L* = 10

Combined Global Model of Equatorial Chorus

 Waves are strongest in the lower band during active conditions, with intensities of the order of 2000 pT² in the region 4 < L* < 9 from 23-12 MLT

Combined Global Model of Equatorial Chorus

 Waves are weaker in the upper band, with largest intensities of the order a few hundred pT² during active conditions from 4 < L* < 7 from 22-11 MLT

AE $\langle 100 nT \rangle$ 100 \langle AE \langle 300 nT AE \rangle 300 nT \mathbf{Sun} 10^{4} **Mid-Latitude Lower Band Chorus** 10 ${\sf B}_{\sf w}^{-2}~({\sf pT}^2)$ 102 DE1 101 100 10^{-} 10^{4} 10^{-3} Mid-latitude lower band ullet $B_w^{\ 2} \ (pT^2)$ CRRES 10² chorus is also substorm 101 dependent 10^C 10^{-} 10⁻¹ $B_w^{\ 2} \ (pT^2)$ Waves most intense on Cluster 1 • 102 the dayside during active 101 10^C conditions 10^{-} 101 10⁵ ${B_w}^2 \, (pT^2)$ 10² Little or no activity on the ulletTC110¹ night-side 10⁰ $L^{*} = 10$ 10^{-} 10 $B_w^{\ 2} \ (pT^2)$ THEMIS 10² 10¹ British Antarctic Survey

00

 $0 \cap$

NATURAL ENVIRONMENT RESEARCH COUNCIL

10

٥n

Combined Global Model of Mid-Latitude Chorus

 Waves strongest in the lower band, with intensities of the order 2000 pT² during active conditions from 4 < L* < 9 but restricted to 07-13 MLT

Combined Global Model of Mid-Latitude Chorus

 Little or no upper band chorus at mid-latitudes, with observed intensities close to background levels

Combined Global Model of Nightside Chorus

• On the nightside lower band chorus intensities are strongest during active conditions in the region $4 < L^* < 10$ and are confined to $|\lambda_m| < 12^\circ$

Combined Global Model of Nightside Chorus

• Nightside upper band chorus intensities are strongest during active conditions in the region $4 < L^* < 7$ and are confined to $|\lambda_m| < 6^\circ$

Combined Global Model of Dayside Chorus

 On the dayside lower band chorus intensities are strongest during active conditions in the region 4 < L* < 9 and extend to higher latitudes

Combined Global Model of Dayside Chorus

• Dayside upper band chorus intensities are weaker and are confined to $|\lambda_m| < 6^{\circ}$

Conclusions

- Our new global model of whistler mode chorus extends the coverage and improves the statistics of existing models. The principle conclusions are:
 - Equatorial chorus is strongest in the lower band during active conditions with peak intensities of the order 2000 pT² in the region 4 < L* < 9 in the region 23-12 MLT
 - Mid-latitude chorus is strongest in the lower band during active conditions with peak intensities of the order 2000 pT² in the region 4 < L* < 9 between 07-14 MLT
- We have developed a VLF wave database using data from five satellites. The resulting models of whistler mode chorus and other wave modes will be used to improve our radiation belt models and forecasts

Nightside Lower Band Chorus

- Average wave intensity outside the plasmapause as a function of L* and λ_m for the region 21 06 MLT
- Strongest emissions confined to within 10° of the equator

Nightside Upper Band Chorus

- AE (100 nT 100 (AE (300 nT AE \rangle 300 nT 104 103 $B_w^{\ 2} \ (pT^2)$ $z (R_{\text{E}})$ 102 DE1 101 100 10 104 103 $B_w^{2} (pT^2)$ CRRES z (R_E) 102 101 100 10^{-} 104 103 Cluster 1 $B_w^{\ 2} \ (pT^2)$ $z (R_{\text{E}})$ 102 101 100 10 104 103 $B_w^{\ 2} \ (pT^2)$ $z (R_{\text{E}})$ 102 TC1 101 100 10^{-1} 104 103 $B_w^2 (pT^2)$ THEMIS $z (R_{\text{E}})$ 102 101 100 -1 10 4 6 × (R_E) 0 2 4 6 8 10 0 2 4 6 8 10 0 2 8 10 \times (R_c) \times (R_E)
- Strongest emissions more tightly confined to within 5° of the equator

Dayside Lower Band Chorus

- Average wave intensity outside the plasmapause as a function of L* and λ_m for the region 06 15 MLT
- Strongest emissions extend to higher latitudes

Dayside Upper Band Chorus

 Dayside upper band chorus is much weaker and less extensive being confined to within about 5° of the magnetic equator

