

Forecasting the High Energy Electron Radiation Belts Using Physics Based Models

Richard B. Horne Presented by Nigel P. Meredith

Invited talk, Fall AGU, 4th December 2012

Magnetic Storms – Radiation Belts

- The outer radiation belt is highly variable
- The flux of relativistic electrons can change by several orders of magnitude on a variety of timescales

> 2 MeV electron flux

Baker et al., Nature [2004]

Magnetic Storms – Radiation Belts

- Satellites in MEO such as the GPS satellites experience higher radiation GEO than those at GEO
- Boeing use plasma thrusters to get from GTO to GEO – 1-2 months in the heart of the radiation belts
- O3b constellation of 8 satellites to be launched into the slot region in 2013

> 2 MeV electron flux

British Antarctic Survey NATURAL ENVIRONMENT RESEARCH COUNCIL Slot region Usually benign – except during large storms

Radiation Damage to Satellites

- Relativistic electrons cause internal charging
- Internal charging can lead to high electric fields the subsequent discharge of which can lead to:
 - damage to the dielectric
 - component failure
 - phantom commands
- Significant correlation between satellite anomalies and the E > 2 MeV electron flux at GEO [lucci et al., 2005]

Radiation Belt Forecasting

- Radiation belt forecasting has a number of benefits for satellite operators.
- During periods of high risk operators can:
 - switch off non-essential systems
 - reschedule manoeuvres and software upgrades
 - ensure spare capacity is available and reroute communications traffic if necessary
- SPACECAST radiation belt models designed to forecast the high energy electron radiation belt

Forecasting Concept

- It takes ~ 40-60 minutes for the solar wind to flow from the ACE satellite to the Earth
- Access ACE satellite data in real time and use it to drive our forecasting models
- Use a forecast of Kp index from Swedish Inst. Sp. Phys. (Lund) and data from BGS(UK), Europe, USA and Japan
- We use physical models
 - Like weather forecasting

Physical Equations

- The model is based on the solution of a diffusion equation for phase-space density
- Time-dependent Fokker Planck equation in pitch-angle (α), energy (E) and L* (L)
- The values of the diffusion coefficients D_{LL} , $D_{\alpha\alpha}$ and D_{EE} must be calculated

Radial Diffusion: Transport of Electrons Across the Magnetic Field

- Radial diffusion is an important transport process in the Earth's radiation belts:
 - driven by fluctuations in the Earth's electric and magnetic fields on timescales of the drift period
 - enhanced by ULF waves

 [e.g., Hudson et al., 1999;
 Elkington et al., 1999]
- For radial diffusion we use the magnetic radial diffusion coefficients of Brautigam and Albert [2000]

We use Physical Models that Include Wave-Particle Interactions

Whistler Mode Chorus

- Pitch angle and energy diffusion coefficients calculated using the PADIE code [Glauert and Horne, 2005]
- For whistler mode chorus the driftaveraged diffusion coefficients are based on CRRES statistical maps of lower band chorus and fpe/fce scaled by Kp

Meredith et al., GRL [2003]

Plasmaspheric Hiss and Lightning Generated Whistlers

 For plasmaspheric hiss and lightning generated whistlers the drift-averaged diffusion coefficients are based on CRRES statistical maps of the relevant wave power and fpe/fce scaled by Kp

Meredith et al., JGR [2007]

E = **1.09 MeV**

 Model 100 days during the CRRES mission

E = 1.09 MeV

Radial diffusion alone
 overestimates flux and does not
 predict the slot

E = 1.09 MeV

- Radial diffusion alone overestimates flux and does not predict the slot
- Radial diffusion and hiss predicts the slot but underestimates flux due to lack of local acceleration

E = 1.09 MeV

- Radial diffusion alone overestimates flux and does not predict the slot
- Radial diffusion and hiss predicts the slot but underestimates flux due to lack of local acceleration
- Radial diffusion, chorus and [/] hiss best reproduce structure of the radiation belts

Electron Radiation Belt Forecasts

• Model

- operates 24 hours a day in near real time and is updated every hour
- provides 3 hourly forecasts using the Kp forecast from Lund
- provides a risk index for GEO, MEO and the slot region
- The forecast is freely available on-line: http://www.fp7-spacecast.eu

SPACECAST – Forecast >800 keV electrons

• During the 9 March 2012 magnetic storm the model forecast the E > 800 keV flux at GOES 13 to within a factor of two and later in the event to within a factor of ten

SPACECAST – Forecast >800 keV electrons

GOES orbit

 Flux of E > 800 keV electrons most enhanced in the heart of the outer radiation belt around L* = 4.

SPACECAST > 2 MeV Electrons

 ACE solar wind velocity data from and GOES E > 2 MeV flux became unreliable due to the solar proton event

 SPACECAST model switched to use a nowcast of the Kp index from BGS and continued to forecast without interruption

Risk of Satellite Charging - ESD

- Model results converted into a risk index based on previous satellite anomalies at geostationary orbit
- High Risk
 - fluence > 5x10⁸ cm⁻² sr⁻¹
- Medium Risk
 - 5x10⁷ < fluence < 5x10⁸ cm⁻²sr⁻¹
- Low Risk
 - fluence < 5x10⁷ cm⁻² sr⁻¹
- Note: GOES electron daily fluence too high during this event due to contamination by > 10 MeV protons

Risk of Satellite Charging - ESD

- We also calculate a risk index for MEO and the slot region
- Risk depends on satellite design
- Needs close collaboration with satellite operators and designers

Effect of WPIs beyond GEO

- Current model includes the effects of wave particle interactions inside geostationary orbit
- Flux at GEO not always wellmodelled
- To test the effect of WPIs beyond GEO we include chorus out to L* = 8

Effect of WPIs beyond GEO

- When we include WPIs beyond GEO we find:
 - increased variability beyond GEO
 - much better agreement with GOES data
- These results suggest that inclusions of WPIs beyond GEO out to at least L*=8 will improve modelling and forecasting accuracy

Flux Dropouts

- Rapid drop in GOES flux on 22 March not captured by model
- Drop out occurred just after solar wind pushed magnetopause inside L* = 8
- Observation suggests including the effects of the magnetopause on radial transport and loss likely to improve models and forecasts

Benefits of Physical Models

- Forecast what is likely to happen enables mitigation
- Reconstruct what happened in the past identify the cause of satellite anomalies
- Construct data where there are little/no observations GNSS orbits
- Calculate extreme conditions based on physical principles
- Calculate number of particles precipitating into the atmosphere effects on low altitude satellites, ionization and GPS signals

Next Steps

- Current work is focussed on developing the underlying models. Key next steps include:
 - Better treatment of the outer boundary
 - Improved diffusion coefficients for hiss and chorus
 - Improved initial condition
 - Improved radial diffusion coefficients
 - Better low energy boundary condition
 - Model validation by comparison with GOES, RBSP and Galileo data
- Improvements to the SPACECAST forecasts will be introduced on 1st March 2013

Conclusions

- SPACECAST makes real time forecasts of the radiation belts for satellite operators
- Forecast for 3 hours, updated every hour, and translated into a risk index
- Unique features
 - Physical models, that include wave-particle interactions
 - Forecast for the whole radiation belts including GPS/Galileo orbits
 - European led with USA and Japan
- Forecasts can be improved by
 - Coupling the solar wind/magnetopause to the radiation belts
 - Including low energy electrons surface charging
- Options to model extreme events and orbits where there is little or no data

Acknowledgement

 The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 262468

http://www.fp7-spacecast.eu

